Third stage/ Microbiology

ALS RAV

Assistant Lecturer Najwan Sadik Shareef Basic Science department College of Dentistry University of Basrah

Objectives

-Recognize the difference between antibiotic & antimicrobial
-know the genral characteristics of antimicrobial drugs
-How to determine the level of antimicrobial activity
-Mechanisms of action of antimicrobial agents
-know the factors that influence the effectiveness of
antimicrobial drugs

-Mechanism of antibiotic resistant

Antibiotic & Antimicrobial

*Antibiotic:

Also known as antibacterial, it is medications that destroy (kill) or slowdown the growth of bacteria.

It can be produced by a microorganism that kills or inhibits the growth of other microorganism.

-Antibiotics are powerful drugs that can treat diseases caused by bacteria BUT they cannot treat viral infections(cold, flu and most coughs)...

*Antimicrobial agent:

A chemical that kills or inhibits the growth of other microorganism.

This term include antibiotics and chemically synthesized drugs

*General Characteristics of Antimicrobial Drugs:

1-Selective toxicity with minimum side effects

*Antimicrobial drug should cause greater harm to microorganisms than the host

- Therapeutic dose

The drug level required for clinical treatment of a particular infection

- Toxic dose

The drug level at which the agent becomes too toxic for the host (produces undesirable side effects).

- Therapeutic index

The ratio of toxic dose to therapeutic dose: the larger **therapeutic index** the better.

2-Broad spectrum activity

(activity against a wide variety of pathogens) is more desirable than narrow spectrum activity.

3- Drug can be cidal or Static Bacteriocidal (able to kill) Bicteriostatic (able to inhibit growth)

4- Antimicrobial agents can occur
- naturally or

- be synthetic or
- semi- synthetic (chemical modifications of naturally occurring antibiotics)

Antibiotic spectrum of activity

* Determining the Level of Antimicrobial Activity

Dilution susceptibility tests

The lowest concentration of the antibiotic resulting in no microbial growth is the minimum inhibitory concentration (MIC)

Disk diffusion tests

 disks saturated with specific drugs are placed on agar plates inoculated with the test

organisms.

*Mechanisms of Action of Antimicrobial Agents

- **1. Inhibition of cell wall synthesis**
- 2. Inhibition of protein synthesis
- **3. Inhibition of nucleic acid synthesis**
- **4. Disruption of cell membranes**
- 5. Inhibition of metabolic activities

1• Inhibition of cell wall synthesis Stop synthesis of wall by preventing cross linking of peptidoglycan units.

-Beta lactam containing antibiotics such as penicilin and cephalosporins.

-Vancomycin

-Cycloserine

2. Inhibition of protein synthesis

-Aminoglycosides (streptomycin, neomycin, Gentamicin, and kanamycin)

-Tetracyclines

-Macrolides (Erythromycin, Azthromycin)

-Chloramphenicol

3• Inhibition of nucleic acid synthesis

Stop DNA replication in :

-Qunilones and fluoroquinolones(such as ciprofloxacin)

-Rifampicin

<u>OR</u>

Stop RNA synthesis in :

-Metronidazole

4• Disruption of cell membranes

Inhibition of functions of cellular membrane (the cytoplasmic membrane).

-Polymyxin can selectively combine with phosphatide in the cell membrane and cause the increase of membranous permeability. As a result, some important materials will outflow from bacterial cells and result in death of bacteria

5. Inhibition of metabolic activities (Antimetabolites)

A drug mimics the normal metabolite, and acts as a competitive inhibitor. The process happened when enzyme of cell recognizes the drug instead of the normal metabolite (pathway stops).

-Sulfonamides (Sulpha drugs) and trimethoprim

(inhibit folic acid synthesis).

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Factors Influencing the Effectiveness of Antimicrobial Drugs

1- Factors influencing a drug's ability to reach the site of Infection.

2- Factors influencing drug concentration in the body.

3- The nature of the pathogen

1- Factors influencing a drug's ability to reach the site of Infection:

- a- Mode of administration
- Oral
- Topical
- Parenteral (injection)

b- Susceptibility to various body defense mechanisms

(e.g., penicillin is rapidly degraded in the stomach, but the penicillin derivative ampicillin is more acid stable)

2- Factors influencing drug concentration in the body.

Drug concentration must exceed the pathogen's MIC for the drug to be effective.

- This will depend on
- a- Amount of drug administered
- b- Route of administration
- c- Speed of uptake
- d- Rate of clearance (elimination) from the body

3- The nature of the pathogen

This includes:

a-Inherent susceptibility of the pathogen and the presence of its active growth .

b- Drug resistance (This has become an increasing problem)

Bacteria had developed a number of mechanisms to protect themselves from the action of antibiotics.

Mechanisms of Antibiotic Resistance

- Enzymatic destruction of drug
- Prevention of penetration of drug
- Alteration of drug's target site

.Chemical modification of the drug

1-Enzymatic Destruction (inactivation) of the drug

Antibiotic hydrolysis by bacterial cellular enzymes result in stopping its effectiveness. An example: penicillinases and other beta lactamases.

2-Prevention of penetration of drug

Alterations that affect permeability which can involve a decreased influx or an increased efflux from the bacterial cell.

3-Alteration of the drug's target site through mutation.

- An example is streptomycin resistance.
- Streptomycin binds to bacterial ribosome and acts through prevention of protein synthesis. In resistant bacteria ,alteration of a single amino acid in bacterial ribosomal protein will prevent streptomycin binding to ribosome and thus will not affect bacterial protein synthesis.

4-Chemical modification of drug:

By acetylation, phosphorylation or adenylation of the antibiotic by bacteria results in inactivation of the antibiotic.

Thank you

Recap

-Recognize the difference between antibiotic & antimicrobial

-Know the genral characteristics of antimicrobial drugs

-Know how to determine the level of antimicrobial activity

Know the mechanisms of action of antimicrobial agents

-Know the factors that influence the effectiveness of

antimicrobial drugs

- Know the mechanism of antibiotic resistant

